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A B S T R A C T   

Flood frequency analysis lies at the core of hydrology and water engineering as one of the most required esti-
mates for water planning and design of hydraulic structures. For ungauged basins, where no information is 
available, various flood regionalisation techniques have varying degrees of complexity and resulting perfor-
mance, depending on the study’s goal, the region analysed, and the information available. This study evaluates 
the use of hydrological models for flood regionalisation in Chile, using 1) A large sample dataset of 101 
catchments; 2) the continuous simulation approach with the GR4J model; 3) the leave-one-out strategy for 
performance testing; and, 4) two regionalisation methods: Nearest Neighbour (NN) and Physical Similarity (PS), 
together with several alternative objective functions for calibration purposes and regionalisation strategy (in all 
cases adopting a single criterion, single variable and determinist approach for the parameter’s selection). Our 
results showed that performance (both in calibration–validation and regionalisation) is highly variable (in terms 
of reproducing the runoff hydrograph and flood statistics), depending on the catchment’s aridity (e.g., around 
66–82% of catchments with NSE above 0 in humid regions but it severely drops to 12–44% of catchments with 
NSE above 0 when evaluating arid catchments). We also found that flood-specific calibration strategies produce 
better results for floods but poorer performance in runoff hydrograph reproduction. Finally, we highlight that our 
regionalisation results were in close agreement with those from one of the currently recommended methods by 
Chilean engineering for flood regionalisation. This is particularly promising, considering that the continuous 
simulation approach gives access to the complete time series and not only flood statistics. We end this manuscript 
by discussing several sources of uncertainty, hoping that these can be accounted for in future studies.   

1. Introduction 

1.1. Motivation 

Floods historically had a special place in the development of hy-
drology, mainly because their statistical (frequency) analysis plays an 
essential role in designing civil engineering structures (Singh and 
Strupczewski 2002; Rogger et al., 2012a; Zhu et al., 2018; Mishra et al. 
2022). It can be argued that both hydrology and water engineering have 
developed (coevolved) with hydrological extremes when dealing with 
changing flood risk over time for human societies (Di Baldassarre et al. 
2017), a topic particularly relevant when dealing with the threat of 
changes in flooding dynamics, which has become an essential topic of 
discussion in recent times (Blöschl et al. 2015; Berghuijs et al. 2017; 
Sharma, Wasko, and Lettenmaier 2018; Blöschl et al. 2019). However, 

while much can be said regarding the complexity of floods, either 
because of a) their numerous types and classifications (Merz and Blöschl 
2003; Tarasova et al. 2019); b) their variability in terms of spatial and 
temporal scales (Merz et al. 2012; Hall et al. 2014; Berghuijs et al. 2019); 
and, c) their economic and environmental importance (Vorogushyn 
et al. 2018; Talbot et al. 2018), their estimation has been traditionally 
viewed as a statistical problem (Merz and Blöschl 2003; Dawdy, Griffis, 
and Gupta 2012; Miniussi, Marani, and Villarini 2020). In this regard, it 
is a well-known issue that floods do not always follow the traditional 
assumptions of statistical analysis (i.e., independent and identically 
distributed - IID, see Fischer, Schumann, and Schulte 2016; Zaghloul 
et al. 2020; Klemeš 2000; Brunner et al. 2021, for a historical perspec-
tive) and, therefore, the classic flood frequency analysis (FFA) is limited 
from the beginning. Worthy mentioning is that FFA assumes available 
data, becoming an obvious problem when dealing with ungauged 
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basins. 

1.2. Literature review 

The problem of predictions in ungauged basins (PUB) has been 
covered repeatedly in the hydrology community and was the focus of 
huge developments during the 2000 s and early 2010 s (see Sivapalan 
2003; Hrachowitz et al. 2013; Blöschl et al. 2013). In terms of region-
alisation methods (i.e., how to estimate the hydrology of ungauged 
basins), there are many and quite varied methods available, but gener-
ally can be classified into two main groups depending on whether the 
method depends on a hydrological model or is independent of them by 
using, for instance, hydrological signatures or runoff time series directly 
(Razavi and Coulibaly 2013; Blöschl et al. 2013). Other classifications 
can be found in the literature; for instance, Viglione et al. (2013)) 
classified them according to process based vs statistical methods. 
Notwithstanding the above, both classifications overlap pretty well. 

According to Razavi and Coulibaly (2013)), most of these region-
alisation methods share standard procedures, which are briefly 
mentioned as follows: 1) Identification of catchment attributes (meteo-
rological or physiographic characteristics); 2) Hydrological variables of 
interest (mainly runoff and its derivatives); 3) A model performance 
evaluation technique, typically the leave-one-out cross-validation 
method; 4) The regionalisation method per se; and, finally 5) An un-
certainty analysis (typically ignored in most studies. See the following 
references where uncertainty analysis was included: Blazkova and 
Beven 2002; Wagener and Wheater 2006; Cibin et al. 2014; Arsenault 
and Brissette 2014; Sellami et al. 2014). Remarkable, and in contrast to 
these commonalities across studies, we also find a vast diversity of ap-
proaches when analysing the regionalisation methods per se, even 
among groups of model-dependent or model-independent methods. 

There are regression-type methods for the model-dependent types, 
which look to find relationships between catchment characteristics and 
model parameters to interpolate the latter for the ungauged catchment. 
Some methods transfer entire sets of model parameters based on hy-
drological similarity among catchments (He, Bárdossy, and Zehe 2011), 
which is typically assumed that can be approximated by minimising 
geographical distance (also known as spatial proximity, or nearest 
neighbours, NN) or minimising physical, meteorological or hydrological 
differences (also known as physical similarity, PS), among others. There 
is, therefore, extensive literature on the application and comparison of 
these different approaches. Among them, Oudin et al. (2008) tested 
regression, NN and PS with two different hydrological models (TOPMO 
and GR4J) on a large sample of catchments (913) in France. Razavi and 
Coulibaly (2016) applied an ensemble multi-modelling approach with 
four models (two hydrological models and two data-driven models) for 
estimating the daily hydrograph in 90 catchments treated as ungauged 
in Canada. Arsenault et al. (2019) tested three lumped hydrological 
models and six regionalisation approaches (among them, combinations 
of the NN, PS and regression approaches) for 30 catchments in Mexico. 
Neri, Parajka, and Toth (2020) studied the effects of station density in a 
large sample of catchments (209) in Austria, employing both NN and PS 
methods while also employing two different hydrological models (TUW 
and GR6J); and, most recently, Qi et al. (2022) tested several approaches 
for regionalisation (NN, PS, hybrids of the two, regression; averaging 
parameters and outputs, simple mean or weighted mean) for a large 
sample of global catchments (2,277) and with four hydrological models 
(GR4J, SIMHYD, HAJ, and HMETS). Among the methods that do not 
require a hydrological model (but instead look for relationships between 
discharge and other variables), we also have several methods available 
such as the class of purely statistical methods, which include several 
regression types (Ouali, Chebana, and Ouarda 2016), index-flood 
methods (Hailegeorgis and Alfredsen 2017; Dalrymple 1960; Hosking 
and Wallis 1997), kriging (Archfield et al. 2013), process-based and 
event-based methods such as the rational formula (Grimaldi and Pet-
roselli 2015) and the different variants of the unit hydrograph (Brunner 

et al. 2018). 
Razavi and Coulibaly (2013) pointed out that there is no universal 

method for regionalisation, so finding such significant variability in 
methods, models, studies, and results available in the literature is not 
surprising (both for model-dependent and model-independent 
methods). However, in terms of their applications, and based on the 
reviews by Parajka et al. (2013) and Salinas et al. (2013), there is a clear 
preference for the employment of methods based on hydrological 
models for the estimation of ordinary properties of runoff (e.g., flow- 
duration curves, hydrological signatures, and the entire runoff hydro-
graph), also known as continuous streamflow regionalisation. Methods 
based on regression, geostatistics, and others (e.g., index-flood methods) 
are preferred for the regionalisation of extreme events. In fact, Salinas 
et al. (2013), covering the estimation of extreme events, did not find 
studies exploiting model-dependent methods for flood regionalisation. 
Remarkably, most of the studies used global/regional regression, the 
index-flood method, and geostatistics. Because all methods have 
advantages-disadvantages, in principle, the decision to use one method 
above others should be made once a direct comparison between 
methods’ results has been established. Unfortunately, the review of 
Salinas et al. (2013) shows us that model-dependent methods for flood 
regionalisation have hardly been tested in the scientific literature, with 
very few exceptions (Blazkova and Beven 2002; Viviroli et al. 2009; 
Grimaldi et al. 2021; Moretti and Montanari 2008). 

Model-based methods have some interesting properties compared to 
the other approaches. They can explicitly account for changes in the 
catchment (such as soil type and climate); they allow the calculations of 
the whole hydrograph and not just specific elements of it; and, coupling 
the continuous simulation approach with weather generators, they can 
produce long time series, increasing the reliability of the extreme fre-
quency analysis (Blazkov and Beven 1997; Lamb et al. 2016; Winter 
et al. 2019). These reasons and some recent developments in using the 
continuous simulation approach for FFA motivate the use of these 
models for flood regionalisation purposes. However, as far as we know, 
explicitly studying flood regionalisation with the continuous simulation 
approach has been covered in very few studies (e.g., Calver, Lamb, and 
Morris 1999; Blazkova and Beven 2002; Lamb and Kay 2004; Moretti 
and Montanari 2008; Viviroli et al. 2009; Grimaldi, Petroselli, and 
Serinaldi 2012; Biondi and Luca, 2015; Grimaldi et al. 2013, 2021). 

This paper aims to apply the continuous simulation approach for 
flood regionalisation in continental Chile. As mentioned before, the 
literature on this topic is surprisingly small compared with the extensive 
literature on regionalisation, floods, and FFA per se (see Guo et al. 2021) 
for a review on regionalisation; Boughton and Droop (2003) for a review 
on continuous simulation methods; Mishra et al. (2022) for a general 
review on floods; Nerantzaki and Papalexiou (2022) for a review on 
flood statistics; and, Smithers (2012) and Dawdy, Griffis, and Gupta 
(2012) for a review on the specific topic of flood regionalisation). 
Regarding PUB studies in Chile, we can mention at least two important 
contributions: i) the National Water Balance, recently updated (DGA 
2017; 2018; 2019), where the Variable Infiltration Capacity (VIC, Liang 
et al. 1994)) hydrological model was employed to regionalise runoff 
time series at several Chilean catchments, and ii) the work of Baez-Vil-
lanueva et al. 2021), where they evaluated the performance of four 
different gridded precipitation products in reproducing the daily 
hydrograph over 100 Chilean catchments (treated as ungauged) with the 
TUW hydrological model. Unfortunately, none of these studies covered 
the specific topic of estimating FFA in ungauged catchments, which is 
the interest of this study. Last but not least, since the Chilean territory 
encompasses a huge spatial-climatic variability, including several 
different types of climates (3 first-order, 6 s-order, and 9 third-order 
types of climate following the Koppen-Geiger climate classification 
(Sarricolea, Herrera-Ossandon, and Meseguer-Ruiz 2017), and strong 
elevation gradients (from north to south and from east to west 
(Fernández and Gironás 2021), we anticipate a substantial variability in 
the results, considering the well-known effect of aridity and elevation in 
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regionalisation results (Parajka et al. 2013; Salinas et al. 2013; Blöschl 
et al. 2013). 

1.3. Manuscript’s goals 

The following research questions are addressed:  

▪ What is the role of calibration criteria, regionalisation method, 
and other methodological decisions in regionalisation 
performance?  

▪ How well does the continuous simulation approach reproduce 
flood quantiles?  

▪ How do the results compare with currently employed methods 
for flood regionalisation in Chile? 

This paper is structured in the following format: Section 2 describes 
the selected catchments for analysis, their properties, data availability 
(e.g., inputs and evaluation period), the hydrological model selected, 
and the calibration strategies employed (i.e., the objective functions to 
be optimized and the regionalisation strategies considered). Section 3 
shows the results of the calibration/validation for the different cali-
bration strategies and presents the results of regionalisation, both for 
daily runoff reproduction and flood statistics. Finally, Section 4 dis-
cusses our findings, including a summary of manuscript limitations and 
potential ways to improve the analysis. 

2. Methodology 

2.1. Study area 

The study area consists of 101 Chilean catchments (Fig. 1) belonging 
to the CAMELScl database (Alvarez-Garreton et al. 2018). Their main 
attributes are presented in Table 1. These catchments have huge vari-
ability; for instance: their areas range between 80 and 18.550 km2 (with 
a median of 690 km2); the mean annual precipitation ranges between 70 
and 3200 mm/yr (with a median of 900 mm/yr); elevations ranging 
between 140 and 4780 m a.s.l. (with a median of 1230 m a.s.l.); and the 
aridity index ranges between 0.3 and 14.5 (with a median of 1). This 
high aridity is an essential feature of the northern and central regions of 
Chile, and significant difficulties in reproducing the full hydrograph for 
all these catchments can be anticipated when employing only one 

Fig. 1. Mean annual hydro-meteorological variables and catchment properties. The histograms indicate the number of catchments (out of 101) in each bin. The 
points represent the locations of catchment outlets. 

Table 1 
Summary of Catchment’s Attributes. Sample size = 101.   

Unit Min Median Max 

Elevation m.a.s.l. 137 1230 4777 
Area km2 81 688 18,550 
Mean Annual Precipitation mm 68 906 3194 
Mean Slope % 5.2 18 29.8 
Aridity – 0.29 0.99 14.49 
Snow Cover % 0 0 5 
Glaciar Cover % 0 0 9 
Forest Fraction % 0 15 83 
Crop Fraction % 0 1 53  
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hydrological model, especially considering the well-known difficulties 
of any hydrological model in reproducing runoff in arid regions (Liu 
et al. 2021). The latter, in part, is attributed to the non-linearities of the 
hydrology of arid regions (Blöschl et al. 2013) and its high spa-
tial–temporal variability (Wheater, Sorooshian, and Sharma 2007). 
Additionally, in the case of the Andes mountains, we have many glaciers, 
some of which are strongly affected by climate change (Fernández and 
Gironás 2021), which introduces non-stationarity issues into the 
modelling of these catchments. 

In terms of seasonality, winter rainfall (austral winter, JJA) is the 
predominant precipitation pattern over continental Chile (Sarricolea, 
Herrera-Ossandon, and Meseguer-Ruiz 2017), with a few exceptions in 
the extreme north (the Chilean altiplano) due to the South American 
monsoon (Garreaud 2009) where precipitation events occur during 
austral summer. In terms of spatial climatic patterns, typically, tem-
peratures decrease while precipitation increases when moving from the 
north to the south (Sarricolea, Herrera-Ossandon, and Meseguer-Ruiz 
2017). In terms of interannual variability, it is a well-known fact that 
Chile – together with Peru and other South American countries – are 
strongly affected by El Niño–Southern Oscillation (ENSO) (Cai et al. 
2020), which typically materialises in above-normal precipitation dur-
ing warm ENSO phases in central Chile and during cold ENSO phases in 
northern Chile (Fernández and Gironás 2021). Other modes of interan-
nual variability are also known to play a role in the region (Cai et al. 
2020; Fernández and Gironás 2021). 

2.2. Inputs and model selection 

To develop FFA, the catchments were selected based on a tradeoff 
between increasing data length (increasing the reliability of the FFA) 
and catchments availability (to increase the sample size). As a result, the 
evaluation period considers a data length of around 33 years 
(1987–2020, consecutive and the same period for all catchments). Note 
that the hydrological year is considered from 1 April to 31 March. 
However, due to missing data, the degree of information’s completeness 
is between 69 and 100%, with a median of 90% for the period consid-
ered. The data extracted from the CAMELScl database (data acquired on 
11 November 2021) corresponded to daily catchment-averaged: a) 
Precipitation; b) Potential Evapotranspiration; and, c) Temperature 
(mean, minimum and maximum), together with daily specific discharge 
(discharge divided by the catchment area) and catchment properties 
(area, aridity, mean slope, outlets’ location, among others) (Alvarez- 
Garreton et al. 2018). Additionally, the hypsometric curves and cen-
troids for each catchment were obtained from the SRTM DEM product, 
modified by Reuter, Nelson, and Jarvis 2007) with a 90 m resolution 
(data acquired on 19 April 2021). 

All the modelling and calculations were done with the open software 
R, which is widely employed in hydrology (Slater et al. 2019). In 
particular, we employed the GR4J model (Perrin, Michel, and 
Andréassian 2003), which belongs to the GR model family coded in the 
airGR package (Coron et al. 2017). The GR4J is a conceptual-lumped 
model for estimating daily discharge based on: i) Net (effective) pre-
cipitation estimation, ii) Runoff production, and iii) Runoff trans-
portation with unit hydrographs. GR4J accounts for four parameters 
with two additional parameters related to the CemaNeige snow module 
(Valéry, Andréassian, and Perrin 2014), which is based on the degree- 
day method (Rango and Martinec 1995; Kuusisto 1980). The GR4J- 
CemaNeige model considers six parameters and balances parsimony, 
complexity, and good performance (Perrin, Michel, and Andréassian 
2003). The latter was the primary reason for its selection, together with 
its good performance in an ample variety of climates (Oudin et al. 2010). 

2.3. Calibration-Validation strategy 

Calibration was performed using the 1987–1997 period (11 years) 
and validation with the 1998–2020 period (22 years). Regarding the 

calibration process, we initially considered three optimisation criteria: i) 
the Nash–Sutcliffe efficiency (NSE), ii) the Kling-Gupta efficiency (KGE), 
introduced by Gupta et al. (2009), and iii) its variant introduced by 
Kling, Fuchs, and Paulin (2012) (KGE2012), which are the default op-
tions for the calibration method coded in the airGR package, designated 
here as “calibration Michel”, and based on Michel’s calibration strategy 
described in Perrin (2002). This calibration method combines a global 
search (1st step) using a predefined list of parameters set and a local 
search (2nd step) based on the steepest descent local search to optimise 
the selected objective function. 

However, because we wanted to explore more options than the ones 
available by default in the package, we developed a set of several 
alternative objective functions, focusing on the correct reproduction of 
high flows, flood dynamics, and/or flood statistics. In total, we 
employed the following ten objective functions presented in Table 2 (See 
Appendix, section A.1, for the formulation of each objective function 
and a more in-depth explanation): 

The reasoning behind this choice of calibration criteria goes as fol-
lows: While the KGE, NSE, and KGE2012 are the default options of the 
“calibration Michel”, they naturally give more weight to the high flows 
due to the squared error in their formulations, and particularly the KGE 
and NSE have been found to produce a good performance for the 
reproduction of high flows (Mizukami et al. 2019). Following this 
rationale, it is expected that when more weight is given to the bias be-
tween simulated and observed standard deviation and Pearson term of 
the KGE/KGE2012 (as it is done with the KGE/KGE2012 variants) and 
the observation value of the NSE (as it is done here with the NSEw), we 
could potentially achieve even better performance at reproducing high 
flows and subsequently, flood statistics. Finally, the APFB and RMSNE 
are explicit flood statistics reproduction criteria. However, as mentioned 
before, the RMSNE was done by averaging with the corresponding in-
verse of their return periods as weights, in contrast to averaging them 
with equal weights as its typical formulation. The reason behind this 
methodological choice can be found in the role of the most significant 
errors (typically associated with the largest floods) in the value of this 
indicator. Because preliminary calculations showed us that this error 
was mostly controlled by the largest flood (T = 100 in this case), we 
employed this weighted average to reduce the influence of this error and 
include the lesser magnitude floods in the calibration process and 
evaluation of results. 

2.4. Regionalisation strategies 

Two common approaches were used to establish similarity among 
catchments: PS and NN. Notice that while NN is a straightforward 
computation – by calculating the Euclidean distance between catchment 
centroids – it is not straightforward to determine the best catchment 
attributes for PS. Here, we initially employed the following attributes: 
Area; Aridity; Elevation; Mean Annual Precipitation; Mean Slope; 
Fraction Cover of Snow, Glacier, Forest, Crop, Grass and Barren areas. 
Posteriorly, their Euclidean distance with respect to the catchment 
under analysis was normalised with the corresponding maximum attri-
bute and uniformly averaged (Neri, Parajka, and Toth 2020). Regarding 
the number of donors, we employed the 1 to 10 most similar catchments 
(in terms of PS and NN) because it has been found in the literature that 
the optimum number of donors ranges between 2 and 10 or 5–10 (Oudin 
et al. 2008; Viviroli et al. 2009; Brunner et al. 2018). Notice that the 
nomenclature adopted for the number of used donors is REG-Dζ, where ζ 
ranges between 1 and 10. For instance, REG-D4 means regionalisation 
with 4 donors (see, e.g., Fig. 4). 

Regionalisation results were computed (taking into consideration the 
output time series generated by the model using the parameters of the 
donors) as follows:  

• Average of output time series (nomenclature: MEAN. See, e.g., 
Fig. 4); 
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• Median of output time series (nomenclature: MEDIAN. See, e.g., 
Fig. 4);  

• Weighted mean with the calibration error (nomenclature: W.ERROR. 
See, e.g., Fig. 4);  

• Weighted mean with the distance to the donors (nomenclature: W. 
DIST. See, e.g., Fig. 4). 

Results were analysed for both reproduction of the daily runoff 
hydrograph and flood regionalisation by using the same error indicators 
calculated for the calibration phase and by also adding the percentage 
bias (PBias), the Pearson correlation coefficient (R2) and the absolute 
normalised error for the T = 100 yr flood (ANE, (Salinas et al. 2013)), 
which is a particular case of the RMSNE but only considering the T =
100 yr flood (See Table 2). Notice that ANE, RMSNE, and APFB require 
the identification of flood events, which in this case was done with the 
annual maxima of each hydrological year (also known as the annual 
maximum series, AMS or block maxima in the literature). In particular, 
ANE and RMSNE require the extrapolation of floods statistics (for the T 
= 50; T = 75 and T = 100 yr flood), which in this case was done by 
adjusting the sample of annual maxima to a GEV distribution, whose 
parameters were calculated employing the L-Moments method (Hosking 

and Wallis 1997) and using the “extRemes“ R package (Gilleland and 
Katz 2016). The same procedure was used to obtain the remaining flood 
quantiles of all other time series evaluated in this study. 

Finally, results from the FFA under regionalisation were compared 
with one of the methods recommended by the Chilean engineering 
manual, in this case, the DGA-AC method (DGA 1995). The DGA-AC 
method is essentially an index-flood method, with the regional growth 
curve calibrated with catchments located within homogeneous regions 
and with the T = 10 yr flood as the index flood (which is regionalised 
using the corresponding precipitation with T = 10 yr, catchment area, 
and locally calibrated coefficients for three regions: North, Centre, and 
South). Other methods are available in the Chilean literature, including 
the rational formula and others based on synthetic unit hydrographs. 
However, because all of them required the computation of the concen-
tration time, here we preferred the DGA-AC method due to its simplicity 
and deterministic nature (worth mentioning is that the concentration 
time has several additional subjective and wildly variable elements; see, 
e.g., (Grimaldi, Petroselli, and Serinaldi 2012; A. Efstratiadis et al. 
2014). 

Table 2 
Ten objective functions used in calibration.  

Objective 
function 

Equation Observations 

NSE 
NSE = 1 −

∑N
i=1(Si − Oi)

2

∑N
i=1(Oi − O)

2 

Nash-Sutcliffe efficiency  

Si: Simulated streamflow at the i position (time); 
Oi: Observed streamflow at the i position (time); 
O: Mean of the observed streamflow. 

NSEw 
NSEw = 1 −

∑N
i=1Oi(Si − Oi)

2

∑N
i=1Oi(Oi − O)

2 

Modified version of the NSE (Vormoor et al. 2015)  

Si: Simulated streamflow at the i position (time); 
Oi: Observed streamflow at the i position (time); 
O: Mean of the observed streamflow. 

KGE KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

s1(r − 1)2 + s2(α − 1)2
+ s3(β − 1)2

√ Kling-Gupta efficiency  

r: Pearson correlation coefficient. 
α: Ratio between the standard deviations of the simulated and observed streamflow; 
β: Ratio between the means of the simulated and observed streamflow; 
si: Scaling factors for each term i. 

KGE2012 KGE2012 = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

f1(r − 1)2 + f2(γ − 1)2 + f3(β − 1)2
√ A modified version of KGE  

r: Pearson correlation coefficient. 
γ: Ratio between the coefficients of variations of the simulated and observed streamflow; 
β: Ratio between the means of the simulated and observed streamflow; 
fi: Scaling factors for each term i 

KGEpearson KGEpearson =

1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

s1(r − 1)2
+ s2(α − 1)2 + s3(β − 1)2

√
A modified version of the KGE where more weight (specifically five times more) was given to the 
Pearson correlation coefficient  

s1 = 5/7s2 = 1/7s3 = 1/7 
KGE2012pearson KGE2012pearson =

1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

f1(r − 1)2 + f2(γ − 1)2
+ f3(β − 1)2

√
A modified version of the KGE2012 where more weight (specifically five times more) was given to 
the Pearson correlation coefficient  

f1 = 5/7f2 = 1/7f3 = 1/7 
KGEalpha KGEalpha = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

s1(r − 1)2
+ s2(α − 1)2 + s3(β − 1)2

√ A modified version of the KGE where more weight was given to the bias  

s1 = 1/7s2 = 5/7s3 = 1/7 
KGE2012alpha KGE2012alpha =

1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

f1(r − 1)2 + f2(γ − 1)2
+ f3(β − 1)2

√
A modified version of the KGE2012 where more weight was given to the bias  

f1 = 1/7f2 = 5/7f3 = 1/7 
APFB 

APFB =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(μpeak S

μpeak O
− 1

)2
√
√
√
√

Annual peak flow bias (Mizukami et al. 2019)  

μpeak S: Mean of the simulated annual flow series; 
μpeak O: Mean of the observed annual flow series. 

RMSNE 
RMSNE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
1
Ti

(
Speak Ti − Opeak Ti

Opeak Ti

)2
√ Root mean square normalized error. ANE corresponds to the case where i = 100 years  

Speak Ti: Simulated flood with i return period; 
Opeak Ti: Observed flood with i return period; 
Ti: Return period. Here we considered i = 2, 5, 10, 20, 25, 50, 75 and 100 years.   
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3. Calibration-Validation and regionalisation results 

3.1. Calibration-Validation results 

Results of the calibration–validation phase are shown in Fig. 2, 
Fig. 3, Table A.1a, and Table A.1b (Appendix). Here we present the 
boxplots of the achieved A) KGE, B) NSE, C) PBias, and D) R2 as mea-
sures of error in the reproduction of the daily runoff hydrograph when 
employing each type of the ten calibration criteria described before. 
Results are also separated by aridity (>1 or < 1), with approximately 
half of the catchments belonging to each of these groups (50 and 51, 
respectively). 

Based on Fig. 2 and Fig. 3, there is a substantial difference in per-
formance among all error measures (NSE, KGE, PBias, and R2), both in 
terms of median and variability, with the best and less variable results 
achieved in low aridity catchments and with the worst and most variable 
results occurring in high aridity catchments. In particular, it can be seen 
that all calibration criteria result in NSE and KGE around and above 0.5 
for low aridity catchments and 67%-98% (65%-96%) of catchments with 
NSE above 0 for calibration (validation). In contrast, their performance 
for high aridity catchments results in most median NSE and KGE around 
0 and 32%-96% (19%-55%) catchments with NSE above 0 during cali-
bration (validation). Most calibration criteria produce error measures 
that are more variable in validation than calibration. This situation is 
particularly notorious when looking at the resulting PBias in high aridity 
catchments. However, there are some situations where the variability is 
maintained and only the median performance changes (typically de-
creases). There are a few exceptions where the opposite is true. Most of 

the calibration criteria that produced the worst and most variable results 
were calibration criteria specialised for high flow reproduction (i.e., 
APFB, NSEw, and RMSNE). In particular, it was interesting to note that 
the KGE/KGE2012 variants typically achieved a worse performance 
than their original criteria, excepting the reproduction of the R2, which 
is expected considering that both variants included in this study give 
more weight to this indicator, either directly in their formulations 
(Pearson factor) or indirectly through the standard deviation (alpha 
factor). 

3.2. Regionalisation results 

3.2.1. Selection of regionalisation conditions 
When evaluating regionalisation, we need to consider the uncer-

tainty due to the large amount of data resulting from each different 
modelling decision. In this case, we considered ten calibration criteria 
(objective functions), two regionalisation techniques (NN and PS), ten 
different combinations of donors (REG-D1 to REG-D10), and four 
different ways to estimate the donor ensemble’s output (MEAN, ME-
DIAN, W.ERROR, and W.DIST). This led us to 800 different time series 
for each of the 101 catchments evaluated in this study. Additionally, as 
shown in the previous section, we have several available objective 
functions (both for daily hydrograph and flood statistics reproduction) 
to evaluate, which for pragmatic reasons, prevents us from evaluating 
case by case the impact of these modelling decisions. For this purpose, 
we reduced the problem’s dimensionality by focusing on the following 
targets: i) central trend, and ii) spread of performance in reproducing 
flood statistics. 

Fig. 2. Resulting A) NSE and B) PBias objective functions for Calibration (CAL) - Validation (VAL) of 1) High aridity (>1) and 2) Low aridity (<1) catchments. Note: 
This figure was truncated due to high variability in results. 
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With these in mind, we summarised the results of these different 
800x101 time series in Fig. 4 and Fig. 5, where we present the median 
ANE and the Interquartile range (IQR) obtained by all high- and low- 
aridity catchments, and for all different: i) ways of averaging the out-
puts of each donor; ii) calibration criteria; iii) the number of donors; and, 
iv) regionalisation method. Considering that using short streamflow 
time series to compute floods with high return periods is surrounded by 
high uncertainty, the calibration and validation periods (CAL-VAL) were 
combined to increase the extrapolation reliability. So, in contrast to the 
results presented in the previous sections, where each series simulated 
either the calibration (1987–1997) or the validation (1998–2020) 
period, here, all results consider the full simulation of the available 
period (1987–2020). Notice that we included the DGA-AC method, 
which corresponds to one of Chile’s recommended methods for flood 
regionalisation. 

Fig. 4 and Fig. 5 show that there is a clear difference in the perfor-
mance between the CAL-VAL simulated series, particularly the ones 
calibrated with the APFB and RMSNE flood-specific error indicators 
(which achieve the lowest errors), and the regionalised series, with the 
DGA-AC at the frontier between the two. However, even if this situation 
occurs for both types of aridity and different modelling decisions, we can 
see significant differences in the level of performance achieved between 
the different types of aridity (notice the different axis limits between the 
figures), and the way of averaging the series. For example, MEAN-High 
Aridity REG-D10 achieves similar performance to the DGA-AC (Fig. 4a). 
However, this situation does not occur in the other figures. In fact, there 
is no similar level of performance when employing the median (Fig. 4b), 
while W.DIST-High Aridity REG-D10 KGEalpha and the W.ERROR-High 

Aridity REG-D7-8 KGEalpha achieve similar performance to the DGA-AC 
(Fig. 4c and 4d). On the other hand, when looking at the low aridity 
catchments, the closest to the DGA-AC is the MEAN-Low Aridity REG- 
D9-10 RMSNE (Fig. 5a), while the MEDIAN-Low Aridity REG-D9-10 
APFB (Fig. 5b), and the W.ERROR-Low Aridity REG-D5-6 RMSNE 
(Fig. 5d). Notice that we did not include a legend for the regionalisation 
method per se (NN or PS). In principle, each combination of calibration 
criteria and the number of donors (colour and shape) appears two times 
in each graph in Fig. 4 and Fig. 5. However, intercomparisons between 
them showed us that the NN typically outperforms the PS, with the 
settings selected in this study (selection of attributes and their 
normalization). 

Additional analyses consider the NN regionalisation method with 
MEAN REG-D6 and their calibration error for the weighted average. This 
combination produces one of the best performances in low and high 
aridity catchments (Fig. 5d and Table A.2a from Appendix, and Fig. 4d 
and Table A.2b from Appendix, respectively) in terms of reduced ANE, 
but also produces a good performance in terms of other flood criteria 
such as the RMSNE and APFB. However, it must be mentioned that this 
selection does not account for the high uncertainty of the regionalisation 
process but is merely made for demonstration purposes. 

3.2.2. Regionalised runoff hydrograph 
In order to assess the performance of the regionalisation strategies in 

the reproduction of the daily hydrograph, we present the boxplots (Fig. 6 
and Fig. 7) of the achieved a) KGE, b) NSE, c) PBias, and d) R2, when 
employing each type of the ten objective functions described before, 
separated by aridity (>1 or < 1), similar to what was done for section 

Fig. 3. Resulting C) KGE and D) R2 objective functions for Calibration (CAL) – Validation (VAL) of 1) High aridity (>1) and 2) Low aridity (<1) catchments. Note: 
This figure was truncated due to high variability in results. 
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3.2.1, but only comparing the performance during validation and 
regionalisation, for the period 1998–2020. Notice that here we are only 
showing the results of the NN regionalisation with MEAN REG-D6 
because these regionalisation conditions achieved one of the best per-
formances when reproducing flood statistics (particularly when 
employing donors whose parameters were calibrated with the RMSNE as 
shown in section 3.2.1). If other regionalisation conditions are chosen 
(based on the optimisation of other objective functions or other hydro-
logical signatures), results would likely differ from those presented here. 

Based on Fig. 6 and Fig. 7, regionalisation typically achieves a lower 
performance than validation, mainly in terms of median and IQR, with 
very few exceptions. This is a consistent result in the literature (Blöschl 
et al. 2013), although, as mentioned before, this does not occur in all 
cases (see R2 and PBias for the model calibrated with the RMSNE for 
both types of aridity). Regarding regionalisation performance, around 
12%-44% of the catchments achieve an NSE above 0 for high aridity, 
while 66%-82% of the catchments achieve an NSE above 0 for low 
aridity catchments. In terms of median change of performance (%) for 
arid (humid) catchments for each calibration criteria from validation to 
regionalisation (each with their corresponding calibration criteria), the 
median change is − 17% (-8%) for the NSE; − 47% (–22%) for the KGE; 
38% (91%) for the Pbias; and, 4% (-1%) for the R2. However, it is 
interesting to note that when evaluating low aridity catchments, both 
the NSE and KGE are above 0 and 1-√2 (approx. − 0.41), which implies 
that, despite this reduction of performance due to the regionalisation 

procedure, the model can still successfully lead to better performance 
than employing the mean observation as a predictor (Knoben, Freer, and 
Woods 2019). 

3.2.3. Regionalised flood statistics 
Although we already analysed the performance of the regionalisation 

to reproduce flood statistics in section 3.2.1, we only covered the median 
and IQR behaviour for the resulting ANE. The latter leaves the question 
of how the performance is for all catchments. To analyze this behaviour, 
Fig. 8 present the boxplots of the achieved RMSNE and ANE when 
employing each type of the ten objective functions for calibra-
tion–validation, regionalisation, and the DGA-AC method for high and 
low aridity catchments. 

Based on Fig. 8, all models whose donors were regionalised with 
flood calibration criteria (NSEw, APFB, RMSNE, and KGE/KGE2012 
variants) typically achieved the best median performance in reproduc-
ing flood objective functions (RMSNE and ANE) for both types of aridity. 
The RMSNE and KGEpearson achieved the best results for low and high 
aridity catchments, respectively. This is not a surprise because it is 
known in the literature that the best results of a specific signature are 
achieved when focusing the calibration on reproducing this specific 
signature (Haberlandt and Radtke 2014; Mizukami et al. 2019; Viviroli 
et al. 2009; Pool et al. 2017). 

Worthy of notice is that similar to what was observed in the previous 
section for daily runoff hydrograph performance, the best and less 

Fig. 4. Median and IQR of the ANE of high aridity (>1) catchments employing: Combined calibration and validation (CAL-VAL), Chilean recommended method for 
flood regionalisation (DGA-AC), and regionalisation with multiple calibration criteria (different colours), averaging method (a, b, c and d), and the number of donors 
(different shapes). Note: Legend for the regionalisation method per se (NN or PS) is not included explicitly. 
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variable performances are achieved for the low-aridity catchments. In 
contrast, the worst and most variable performances are achieved for the 
high-aridity catchments, suggesting other controlling dynamics that 
cannot be predicted with different calibration indicators. In fact, a quick 
review of the high aridity catchments with the consistently worst 
resulting flood error indicators showed us that they typically presented 
one (or many) of the following characteristics: 1) Pure Nivo-Glacial 
regime; 2) Regime change between calibration and validation period; 
3) Only 1 or 2 flood events during the whole evaluation period; and, 4) 
Monsoon period (although this represents only a tiny sample of catch-
ments). Unfortunately, because a deeper evaluation of these sources of 
error within the hydrological modelling of these highly arid catchments 
is beyond the scope of this study, further comments are avoided. 

4. Discussion 

4.1. The role of aridity 

The aridity index was expected to have a significant role in model 
performance for calibration–validation and regionalisation. Indeed, our 
results showed significant differences between the two types of catch-
ments in terms of median and IQR for all modelling conditions. In fact, 
our findings were immediately presented in terms of aridity (see Fig. 2 to 
Fig. 8). The latter was motivated by internal calculations showing that 
the aridity index consistently achieved high correlation (both Pearson 

and Spearman) with most of the objective functions employed (see 
Fig. A.1a and Fig. A.1b from Appendix). This result is consistent with the 
literature. For instance, Parajka et al. (2013), who developed a literature 
review of hydrograph prediction in ungauged basins, found better re-
sults for humid regions and larger catchments than for arid and smaller 
ones. Similar conclusions were found by Salinas et al. (2013), who 
reviewed flood and low-flow prediction studies. However, we also found 
a considerable uncertainty associated with the regionalisation proced-
ure (see 3.2.1), which was not quantified here for brevity but needs to be 
considered to assess the robustness of regionalisation conclusions. 

4.2. Calibration criteria 

Regarding the use of different calibration criteria, we found that 
calibration on specific signatures increases performance on the region-
alisation of that specific signature, which is a result already found in the 
literature (Viviroli et al. 2009), particularly during calibra-
tion–validation settings. Regarding the magnitude of our results, for 
almost all high-aridity catchments (and all tested modelling conditions), 
the NSE performance (for both calibration–validation and region-
alisation) was below 0. The latter means that the mean value is a better 
predictor than the simulated one. However, it is interesting to note that 
while almost all arid catchments got an NSE below the mentioned 
threshold for runoff hydrograph reproduction, still a significant number 
of catchments (around half of the sample) achieved a similar and even 

Fig. 5. Median and IQR of the ANE of low aridity (<1) catchments employing: Combined calibration and validation (CAL-VAL), Chilean recommended method for 
flood regionalisation (DGA-AC) and regionalisation with multiple calibration criteria (different colours), averaging method (a, b, c and d) and the number of donors 
(different shapes). Note: Legend for the regionalisation method per se (NN or PS) is not included explicitly. 
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better flood regionalisation performance than the DGA-AC method (see 
Fig. 4 and Fig. 8, A1 and B1). This is quite a contradictory result because 
it implies that despite its low performance in reproducing the runoff 
hydrograph, the model is still helpful for flood regionalisation. However, 
this is not a fair comparison because the DGA-AC method is not rec-
ommended for these types of catchments (DGA 1995), particularly 
because this method was developed for floods generated by liquid pre-
cipitation, while we found several high-aridity catchments with nivo- 
glacial regimes. Additionally, the GR4J model has low performance in 
reproducing the hydrology of this kind of catchments, leaving us in a 
situation where even if the model predictions are helpful, it is likely to 
get these correct answers for the wrong reasons (Kirchner 2006). In any 
case, we found a different situation when looking at the performance of 
low-aridity catchments: almost all catchments achieved an NSE above 0. 
Similarly, the median ANE achieved for flood regionalisation of low- 
aridity catchments is similar to the DGA-AC value, although, as 
mentioned before, this performance varies depending on the calibration 
criteria and other regionalisation conditions. Overall, our region-
alisation results for humid catchments can be considered acceptable 
(compared with those reported in the literature) and promising in re- 
evaluating and updating flood regionalisation techniques for Chilean 
engineers (Fernández and Gironás 2021), particularly in the context of 
the level of performance achieved (similar to the achieved by the 
established method) with only 11 years of data for single criteria cali-
bration and with a deterministic-lumped model, working at daily 
resolution. 

Regarding the calibration criteria, the best results for flood region-
alisation were achieved for the donors whose model was calibrated with 

the RMSNE (and to a minor degree using the APFB), above other 
objective functions such as the NSEw and the KGE/KGE2012 variants. 
The latter is somehow expected, considering that this indicator explicitly 
incorporates flood statistics errors in its formulation. This supports the 
findings of Haberlandt and Radtke (2014), who also obtained better 
reproduction of the flood frequency distribution when explicitly 
including this item in the calibration of the model as part of the objective 
function. The findings of Mizukami et al. (2019) are also aligned with 
our results (they also tested the APFB, the NSE and the KGE for a large 
sample of catchments in the USA using two distributed hydrological 
models and found the best performance in reproducing floods when 
employing the APFB). On this matter, it was interesting also to note that 
while the KGE/KGE2012 variants employed here typically achieved a 
lower performance than their original counterparts in calibration/vali-
dation settings, they also achieved some of the best-worst performances 
for regionalisation, mainly on high aridity catchments. However, results 
may be misread because performance on these catchments was poor 
overall. On a similar note, while KGE, KGE2012, and their variants are 
very similar in their formulations, the levels of performance achieved 
were notably different, indicating that for modelling purposes (partic-
ularly for regionalisation), they can be considered as totally different 
calibration criteria. A similar comment can be made regarding the NSE 
and NSEw, which not only achieved contrasting results (best-worst 
respectively for specific objective functions and vice versa), but contrary 
to our expectations, did not achieve a better performance reproducing 
flood statistics than the other tested calibration criteria (neither in cal-
ibration–validation nor in regionalisation). 

Fig. 6. Resulting A) NSE and B) PBias objective functions for Validation (VAL) - Regionalisation (REG) of 1) High aridity (>1) and 2) Low aridity (<1) catchments. 
Note: This figure was truncated due to high variability in results. 
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4.3. Regionalisation methods 

Our results support the fact that regionalisation based on NN tends to 
beat those based on PS, which is also a consistent finding in the literature 
(Oudin et al. 2008; Neri, Parajka, and Toth 2020); but contrasting the 
results found by Baez-Villanueva et al. 2021) also for Chile (although 
this may be attributed to different methodologies between studies). 
Based on Oudin et al. 2008; Neri, Parajka, and Toth 2020; Lebecherel, 
Andréassian, and Perrin 2016), the performance of these regionalisation 
methods (particularly NN) strongly depends on gauge density, being 
higher for spatial proximity but similar when this density decreases 
to<0.6 per 1,000 km2. In this case, the NN regionalisation method 
consistently outperformed PS in daily hydrograph reproduction and 
flood statistics. The mean station density corresponding to the entire 
area of the study corresponded to 1.3 per 1,000 km2, which is above the 
threshold where these two methods start to converge. We highlight that 
this station density greatly varies across regions (employing regional 
borders, ranging from 0.7 per 1,000 km2 to 6.2 per 1,000 km2, i.e. still 
above the threshold where NN outperforms PS). However, internal 
calculations found that PS results are susceptible to the chosen similarity 
criteria, although none consistently beat the NN for all the combinations 
tested in this study. 

5. Limitations 

Although highly relevant, the following elements were considered 
beyond the scope of this study: i) Comparison with additional flood 
regionalisation methods such as the ones described in the literature 

review section (e.g., index-flood, geostatistics, among others), and ii) 
Uncertainty assessment. 

5.1. Additional flood regionalisation methods 

Regarding comparisons with other flood regionalisation methods, we 
already mentioned a clear preference for employing continuous simu-
lation for daily hydrograph and statistical methods for flood region-
alisation. Because of this division, the number of publications where 
there is a direct comparison between continuous simulation and other 
methods is relatively small. As far as we know, this comparison was 
made by Lamb and Kay 2004; Moretti and Montanari 2008; Viviroli 
et al. 2009; S. Grimaldi, Petroselli, and Serinaldi 2012; Grimaldi et al. 
2013; Biondi and Luca, 2015; Grimaldi et al. 2021). Similar to this study, 
their comparisons were also made with relatively simple event-based 
methods (rational formula) and flood transposition. Some of these 
methods may be considered the selected design approach in several 
countries; it is essential to acknowledge that more complex methods are 
already available in the literature for flood regionalisation (Salinas et al. 
2013). Then, there is a solid motivation to produce more comparisons 
between these different techniques to assess the benefits/weaknesses of 
the continuous simulation approach versus the alternatives. However, 
we believe that the utility of process-based methods such as the 
continuous simulation approach can be found not only in pragmatic 
terms (potentially better results than its alternatives) but also in terms of 
increased knowledge of hydrological processes. For example, Rogger 
et al., 2012a) found usefulness in introducing the derived flood fre-
quency analysis, in terms of complementary information for design 

Fig. 7. Resulting C) KGE and D) R2 objective functions for Validation (VAL) - Regionalisation (REG) of 1) High aridity (>1) and 2) Low aridity (<1) catchments. 
Note: This figure was truncated due to high variability in results. 
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purposes and gaining deeper insight into the flood-generating processes. 
Additionally, in the same study and previous work by Rogger et al., 
2012b), they found discontinuities in the flood distribution for high 
return periods (around T = 30 yr), which they attributed to threshold 
behaviour when soil moisture storage was exceeded. The event-based 
methodology was not able to reproduce this finding that was only 
detected by the continuous simulation approach (adding Monte Carlo 
analysis with synthetic data). The latter showed the utility of the 
continuous simulation method for improved flood frequency assess-
ment, which can also be extrapolated for flood regionalisation 
applications. 

5.2. Uncertainty assessment 

Regarding uncertainty assessment, we could employ the “cascades of 
uncertainty” framework (Smith et al. 2018), typically used in the 
context of climate change impacts (Clark et al. 2016), in order to identify 
the sources of uncertainty in these types of study. These are typically 
associated with uncertainties in the data inputs, model parameters 
(calibration process), and model structure (Beven and Binley 2014; Mai, 
Craig, and Tolson 2020; Moges et al., 2020). Additionally, we also need 
to include uncertainty regarding the regionalisation process and the FFA 
procedure regarding the statistical extrapolation approach, the distri-
bution choice, and the parameter estimation method. Regarding these 
sources of uncertainty, notice that individual assessments of uncertainty 
within the model structure, model parameters or data inputs are not the 
same as uncertainty assessments of the model outputs (Montanari 2007). 
And while the former can be combined to form the latter within the 

context of chaining uncertainty with a Monte Carlo approach (McMillan, 
Westerberg, and Krueger 2018), by assuming the uncertainty model 
(statistics) of the input and the system (such as the GLUE framework, 
Beven and Binley 2014), or with Bayesian analysis, (Schoups and Vrugt 
2010; Sadegh and Vrugt 2014), the latter can also be analysed inde-
pendently with a post-process approach, by using the statistics of the 
model error (Sikorska, Montanari, and Koutsoyiannis 2015; Kout-
soyiannis and Montanari 2022). Such distinction is relevant because 
while from a purely theoretical perspective, there is not enough research 
to say which approach is better, we can infer that, from a pragmatic 
perspective, the post-process approaches have limited utility when 
evaluated in regionalisation studies (Montanari 2007), given the 
inherent lack of streamflow data for their use (unless we could find ways 
to regionalise these post-process uncertainty assessments themselves). 

Here, we will limit ourselves to exclusively discussing the FFA un-
certainty for brevity. For further discussions on the other elements of the 
cascade of uncertainty, the reader is referred to (Müller-Thomy and 
Sikorska-Senoner 2019; Clark et al. 2021) for data input uncertainty and 
error indicator uncertainty, respectively; (Clark et al. 2015) for model-
ling frameworks, which address model structure uncertainty; (Efstra-
tiadis and Koutsoyiannis 2010) for multicriteria/multivariable 
calibration modelling, which addresses parameter uncertainty; and, 
(Montanari and Koutsoyiannis 2012; Sikorska-Senoner, Schaefli, and 
Seibert 2020) for stochastic and ensemble modelling respectively, which 
address the problem of uncertainty quantification. 

Regarding uncertainty within the FFA, this manuscript only applied 
the AMS method, mainly for reasons of simplicity over the alternatives, 
such as the Partial Duration Series (PDS, also known as peak over 

Fig. 8. Resulting A) RMSNE and B) ANE objective functions for Validation (VAL) - Regionalisation (REG) - Chilean recommended method for flood regionalisation 
(DGA-AC) of 1) High aridity (>1) and 2) Low aridity (<1) catchments. Note: This figure was truncated due to high variability in results. 
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threshold (POT) in the literature) due to additional methodological 
uncertainties associated with the estimation of the latter (Madsen, 
Pearson, and Rosbjerg 1997), although the PDS allows the use of more 
than one flood per year. Alternatively, we could also have mixed dis-
tributions, which account for different flood-generating mechanisms 
either: a) indirectly by separating events depending on seasonality 
(seasonal maxima), such as the seasonal mixture model (Fischer 2018); 
b) directly by employing some flood typology or classification method to 
separate heterogeneous flood events into homogeneous groups (Barth, 
Villarini, and White 2019; Fischer and Schumann 2021; Yan et al. 2019). 
Alternatively, we could employ entirely different approaches to FFA, 
such as the Metastatistical Extreme value distributions (Miniussi, Mar-
ani, and Villarini 2020); or the Complete Time-series Analysis (Volpi 
et al. 2019), whose methodologies include the use of all ordinary peaks 
instead of just selecting the events resulting from applying the AMS or 
PDS framework. Unfortunately, a comparison or a deeper analysis of 
these sources of uncertainty could not be made in this study, but we 
highlight the advantage of using the continuous simulation approach in 
all the potential scenarios recently mentioned because of its capabilities 
for giving the full runoff hydrograph, allowing to extract of a more 
significant number of flood peaks (in case PDS or meta statistical dis-
tributions are used) and because it gives enough information to account 
for flood generation mechanism (in case of a flood typology scheme is 
required). Additionally, notice that only one parameter estimation 
method (L-moments method) and only one flood distribution (GEV) 
were used, and no sensitivity analysis of their choice was performed due 
to the increasing complexity of the analysis (despite the literature 
showing that these choices are relevant, depending on the parent dis-
tribution, fitted distribution, its parameters, the method for calculation 
of the parameters, the target return period and the sample size. See 
Madsen et al., 1997 and references therein). 

6. Conclusions 

Continuous simulation was tested to assess its ability for flood esti-
mation in ungauged locations. The approach involves the use of math-
ematical models to simulate the hydrological response of the catchment 
over time, allowing for the prediction of flood events as well as flood risk 
management and mitigation. Continental Chile was taken into consid-
eration as case study because of its varied climates (from north to south) 
and elevation gradients (from west to east). In total, 101 catchments 
were analysed. The GR4J hydrological model coupled with the Cema-
Neige snow module was used for this purpose. Ten different objective 
functions were adopted for calibration purposes and two regionalisation 
methods were considered (nearest neighbour: NN; and, physical simi-
larity: PS). 80,800 (800 time series × 101 catchments) time series of 
simulated streamflow were generated for regionalisation analyses. Re-
sults reinforced that reproduction of flood characteristics depends on the 
objective function. Our findings also showed that NN typically out-
performs PS with the settings selected in this study (selection of attri-
butes and their normalisation), and our regionalisation results were in 
close agreement with those from one of the currently recommended 
methods by Chilean engineering for flood regionalisation (DGA-AC) 
which is an index-flood method. 
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Parajka, J., Perdigão, R.A.P., Plavcová, L., Rogger, M., Salinas, J.L., Sauquet, E., 
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Oudin, L., Andréassian, V., Perrin, C., Michel, C., Le Moine, N., 2008. Spatial Proximity, 
Physical Similarity, Regression and Ungaged Catchments: A Comparison of 
Regionalization Approaches Based on 913 French Catchments. Water Resour. Res. 
44, 3. https://doi.org/10.1029/2007WR006240. 
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Perrin, C., Michel, C., Andréassian, V., 2003. Improvement of a Parsimonious Model for 
Streamflow Simulation. J. Hydrol. 279 (1–4), 275–289. 

Pool, S., Vis, M.J.P., Knight, R.R., Seibert, J., 2017. Streamflow Characteristics from 
Modeled Runoff Time Series – Importance of Calibration Criteria Selection. Hydrol. 
Earth Syst. Sci. 21 (11), 5443–5457. https://doi.org/10.5194/hess-21-5443-2017. 

Qi, W.-Y., Jie Chen, L.u., Li, C.-Y., Li, J., Xiang, Y., Zhang, S., 2022. Regionalization of 
Catchment Hydrological Model Parameters for Global Water Resources Simulations. 
Hydrol. Res. 53 (3), 441–466. https://doi.org/10.2166/nh.2022.118. 

Rango, A., Martinec, J., 1995. Revisiting the Degree-day Method for Snowmelt 
Computations 1. JAWRA J. Am. Water Resour. Assoc. 31 (4), 657–669. 

Razavi, T., Coulibaly, P., 2013. Streamflow Prediction in Ungauged Basins: Review of 
Regionalization Methods. J. Hydrol. Eng. 18 (8), 958–975. 

Razavi, T., Coulibaly, P., 2016. Improving Streamflow Estimation in Ungauged Basins 
Using a Multi-Modelling Approach. Hydrol. Sci. J. 61 (15), 2668–2679. https://doi. 
org/10.1080/02626667.2016.1154558. 

Reuter, H.I., Nelson, A., Jarvis, A., 2007. An Evaluation of Void-filling Interpolation 
Methods for SRTM Data. Int. J. Geogr. Inf. Sci. 21 (9), 983–1008. 

Rogger, M., Kohl, B., Pirkl, H., Viglione, A., Komma, J., Kirnbauer, R., Merz, R., 
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